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T R A N S P O R T  P R O C E S S E S  IN A R E A C T I N G  B O U N D A R Y  LAYER 
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An approximate calculat ion has been made for the boundary layer of a compressible gas in a laminar  flow 
over a semi- inf in i te  porous plate reacting with an injected substance in a homogeneous reaction at an in- 
finite rate. The possibility of applying the solutions obtained to a turbulent boundary layer is aiso exam- 
ined. 

Heat and mass transfer processes in a boundary layer in the presence of chemical  reactions are of great practical 
interest, There are many examples of apparatus and equipment where use is made of subliming surfaces, and also sys- 

tems with gas injected through a porous wall, in which the sublimed or injected substances may reach the boundary lay- 
er and react with it. 

In the analyt ical  research [1, 2, 5, 9, 10] dealing with this matter, attention has been given in the main to flow 
over a body, through the porous wails of which coolant is injected according to the law v w ~ , x  1/2 or v ~ ' ~ x  -1/2 to 

react in the laminar  boundary layer with the incoming stream. A similar problem is examined in [8] for the case of 

uniform inject ion v w = const of a foreign substance along the length of a porous plate. There it is assumed that the 
plate is immersed in an incompressible gas with Pr = Pr m = 1, 

In the present paper an approximate analyt ical  investigation is made of the heat and mass transfer processes in a 

laminar boundary layer into which a substance is uniformly v w -- const injected through a porous s e m i - i n f n i t e  plate to 
react with the steady high-speed gas flow. The solution is given for the case of an infinite reaction rate v r at a certain 
temperature T .  on some surface y = y.(x), which is a surface of discontinuity in the boundary layer. 

It is known that if v r >> Vd, where v d is the diffusion rate, then the reaction occurs in a well-defined zone (reac- 
tion front) [1, 2] within the reacting boundary layer. 

The thermal and diffusion Prandtl numbers (Pr, Prm) are assumed to be variable or constant and not equal to unity, 

i. e . ,  Pr ~ 1 = const, Pr m ~ 1 = const, Pr ~ Pr m. It is assumed that the effective physical coefficients of the gas mix-  
ture are uniform throughout the boundary layer, that the mean molecular weight of the mixture does not differ much 

from the molecular weight of the components, and that the rate of arrival of oxidizer (usually oxygen) from the external 
flow is somewhat greater than the stoichiometric value, as a result of which the progress of the reaction depends only on 
diffusfon of the injected gas, 

Under the above assumptions (thermal diffusion not taken into account), the equations of the laminar  boundary 
layer for reacting gas mixtures may be written in the form 
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where C 1 = Pl/P, Cz, Cz are, respectively, the concentrations by weight of the fuel gas, the reaction products, and the 
inert component; h is the enthalpy h = CpT. 

We assume a l inear dependence of viscosity on temperature g = go T / T  0, where g0 and T 0 are constants, the dif- 
fusion coefficient D = D (T), the thermal  conductivity X = X(T), and Cp = const. 

We transform (1)-(4) to the Crocco variable [3] u = u (x, y) x = x. After e l iminat ion of v, Eqs, (2), (3), and (4) 
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take the form, respectively: 

Ou ~ ~- -~x dx Ou 

"d 0 "Pr Ou , 

~ - - 9 u ~ - -  --0,  
, P r  Ou , Ou Ox 

Ou 

O / C ~  1 OT ~-~ ckC a 
+ (1 -- Pr,,,) ~ I'--P~rm) z Ou "~'~ ~u Ox 

- - ~ 0 ,  

(6) 

(7) 

(8) 

where r is the shear stress, At the wall, in the presence of blowing [4], 

= ~ + (~ V L u. 

These equations are simplified appreciably if we assume 

Oh 0C1 
- - 0 ,  - - 0 .  

Ox Ox 
(9) 

It has been shown [1, 4] that this assumption is admissible for the conditions examined, and results in h and C becoming 
functions of the single variable u. Moreover, since p = gl (T) = gz (u) and r -~  ~ when x --~ 0, Eq, (6) takes the form 

[41 
KK" + 2"qpot*0 = 0, (10) 

where "q = ultra,, 9o = 9/9~ , Ko = P'/~'~ , K = 2 V x/p,g.o~ ua~ r (The primes denote differentiation with respect to 
77). It should be noted that K is a function of the blowing parameter.  With (9) taken into account, the equations of 
energy (7) and diffusion (8) may be transformed to 

h')' k' { h') 
-PT-r ] + ( 1 - - P r )  -~-  \ P r  ] 

(11) 

with the boundary conditions 

pr,~ / q- (1 - -  Pro*) - ~  (12) 

h = h : r  K = 0 w h e n  ~ =  1; (iS) 

KI  = K n ,  C1 = 0, "qi = ~ u ,  hi --= hH; (14) 

h;--h~i = P r  QCI when ~q--~q,;  (15) 
Pro* 

h = h w ,  K' = 2(gv)w ] / x / 9 ~ , u ~  , 

(pv)~ = cons t  = (pv)~,Ca (0) - - C l  (0) %/Pro* when "q = 0. (16) 

Equations (14) and (15), which are written on the basis of studies of laminar  motion in a boundary layer  with a 
discontinuity surface [5, 6], follow from the laws of conservation of momentum (K I = KII) and energy. Relation (15) 
has been introduced to determine the location of the reaction front in the boundary layer. The two successive conditions 
in (14) determine the uniqueness of  the solution. 

The expression for the mass flow of component i (Ji) passing through some surface parallel  to the wall is 

3CI  ] i = p v = C ~ p v - - P D i  oCt - -Ci9  v (17) 
@ Pro, 0u 
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The boundary condition (PV)w = const in (16) was obtained for an injected gas on the basis of (17). The solution of 
the nonlinear momentum equation (10) in regions I and II, taking into account ( t3) - (16) ,  may be obtained by the meth-  
od of numerical  integration. If the case ~ap = const or g0P0 = 1 is to be examined,  Eq. (10) is put in the form 

KK" + 2~ = 0, (18) 

which is independent of the thermal  and diffusion problems. This second-order ordinary differential  equation is equiva-  
lent to the Blasius equation and may be obtained directly from it by simple transformations [7]. 

To compute the functions k 0l), we can use tables prepared for the Blasius problem [11]. An approximate expression 
for k 01) without a l lowance for blowing has the form [7] 

I( ( 9  = K .  V ~----~-~, '' , 

where K=, = c i V~R% =0.664. 

~rhen/~ -~ 1, we obtain from (18) the approximate equation KK" + 2 = 0, which may be integrated in finite form 
[4]. 

We solve the energy equation (11) for regions II and I with the boundary conditions (13)-(15) and (15), (16), re- 
spect ively,  and the diffusion equation (12) in region I with boundary conditions (14)-(16). 

For region I 

"~, K (T )  

o K (o) 

From repeated integration we obtain 

where 

h --- h~ + A.  S (0, ~) - -  u 2 R (0, % 
o o  

(19) 

",; K ('9 

j [ ;  S(0, ~1)= Prexp - -  ( 1 - - P r ) -  d~,, (90) 

0 K (o) 

K (,,) r, 

R(0, "Q= {Prexp - -  ( 1 - - P r ) - -  X 

~' K (o) 0 

K ( : )  

><exp ( 1 - - P r ) - -  d~l d'r 4, 
t J  * 

K (o) 

h' (0) h..: - -  h~ + u~ t? (0, ~,,,) 

(21) 

Pr (0) S (0, h:-:) (2?) 

is a constant of integration; we have S (0, ~1,) and R(0, 71,) from (20) and (21) at a value of the l imi t  of integration 

11 = 11.. 

Using (22), we put (19) in the form 

h = h~, - -  u ~ R  (0, ~,) + [h~., - -  h~ + u~R  (0, ~ . ) l  S (0, v,)/S (0, "r,.). (9.3) 

Similarly,  we obtain the enthalpy distribution in region II: 

where 

h --- &. - -  u2=R b , .  , '9 + [h.  --h~+u~R(O, , ~ . ) ]S (0 ,  ,~,)/S (0, -,.,), 

~, K ('i) 

S (~A,, "~,) - .  j Pr exp (Pr - -  l) - -  d ~, 

T. K (T,,) 

(24) 
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K (-,) , ~ K (~) 

R(,..., ~ ) S {  Prexp [ ; (mr--l)  - ~ ] , '  ~ [ ; d ~ ]  ) , = - - X  exp ( l - - P r ) -  d~ d~. 
~,, K (vl,) ~i* K (~,) 

(26) 

We find functions S 01., 1) and R(~. ,  1) from (25) and (26), t ak ing  the upper l im i t  of in tegra t ion  as ~ = 1. 

We obtain  the  concen t ra t ion  distr ibution in the boundary layer  from the solut ion of (12) and (14)-(16):  

where ~ : ( 9  ~ V)-~,"T~, , 

~i K Ui) 

S,, (~l,, ~i) = Pr,,, exp (Pr,~ -- 1) ~-_] 

~. K (~) 

o K (o1 

From (15), using (23) and (27), we obta in  a re la t ion  for de t e rmin ing  the  posit ion of the reac t ion  front: 

K (%) 

S('%, 1) " exp (!--Pc) - -  -- 

K (0) 

"% K (-r,) 

S (0, -,,..,) u~. 
o K (o) 

K (%) 

i dK] (Pr m -- Pr) -~-  } [1-4- u~ [~ S m (0, -q,)1-1 
t 

K (0) 

(28) 

If  Pr and Pr m are constant ,  functions S(~1, ~2), Sm(~l ,  r12) and R011, t)2), where 771, 772 are the l imi ts  of in tegra -  
t ion,  may  be wri t ten as 

S (~1, .~2) = Prl,~ (-r a , ~,2) = Pr ~ [k (',~j/k (-ql)] p~-~ d ~, 
"t] i 

~2 
S,,, ('r~l, %2) = Prm/m (*l*, ~q'~) = Pr,~ j '  [k (-q.J/k(~q~)] prm-~ d % 

7i 1 

~ 1  Yll 

Functions I and J have been  tabula ted  [4, 7] for various fixed values of the Prandtl  number  and for shear stress dis- 

t r ibutions according to the Blasius law. In the  case when Pr = const and Pr m = const, (23) and (24) transform into the 
Crocco formulas [4] 

h = h~ - -  u 2 Pr J (0, "~) -}- [h, - -  h~ 4- u~ Pr J (0, ~,)1 I(O, N) 
i ( 0 ,  ~ , )  

h = h . . - - u  2 PrJ(3 , , - r , )  + [ h ~ - - h ~ . - t - u  2 PrJ0q , ,  1)1 !(~q*' ~q) 
�9 ~' ' ~ I ( ~ , . , ,  1) 

(29) 

(so) 

and the concen t ra t ion  dis tr ibut ion is g iven by the re la t ion  

C1 = - -  Im (~q,, ~) 1 + Im (0, ~l,) , 
r 

(31) 
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while condition (28) takes the form 

u2 P r d ( O ,  % ) + h . - - h  w u 2 P r d ( ~ q , ,  l ) + h * * - - h ,  

u~l(O, %) Prl(0,  ~q,) + | Prl(aq,, 1) X 

x L [1+ ~wPr,,,u.,l(0, ~q,)l. (32) 

Considerable ma themat i ca l  s impli f icat ion is possible when Pr = Pr m = 1 or u = a = D. From (29)-(31) we obtain, 
respectively,  

H - - H ~  _ ~ H - - H , .  ~ - - ~ *  Ca u |  

-H:.... - -  Hw ~:. , '  H = - - H ,  l - - ' q ,  1 +  u= ~| 

i. e . ,  the distribution of to ta l  enthalpy H = CpT + u*/2 and concentrat ion,  determined by integration in closed form, de-  
pends l inear ly on the flow veloci ty ,  which agrees with the data of [1, 5]. Condit ion (31) for determining the locat ion of 

the reaction front is transformed to an algebraic equation of third degree in ~ , :  

"tt~u~(Q~--l)'F~,=u= --Qu=~-t-Q~w + ~, ~---h=-l-h=--Q~wu= +(h~--h,)=O, (33) 

where the root ~ ,  is so chosen that 0 < r], < 1. 

The solution obtained allows us to ca lcu la te  the heat  flux qw = (H,  -- Hw) a/Cp from the gas to the plate  surface. 

The heat  transfer coeff ic ient  is 

OH OH --~g )=. / F u| (H, -- Hw). (34) 

kK From (22) and (34), taking account of the reIation for "c~ = (0) V p=F=uajx and for the Reynolds number 

Rex = p~ u=x/~,  we have 2 

c p g = u ~  K(0) [ u2 1 
- = - - h ~  . (35) H~--H~, S(0, ~q,)2]/R-e-~ h , + 2 R ( 0 ,  v,,) 2 

Having determined the Stanton number St x and the recovery enthalpy h r according to [4], i . e . ,  

St, = K(0) = 1 c r , (36) 
s(o,  ,)2VRe, 2 

/12 
oo 

h r=h v + 2R(0, ~:!:) 2 ' (37) 

we transform (35) to 

a ---- Cpp .  u= St  (hr --ht,,)/(H, - - H w ) ,  (38) 

where the values S(0, 71,) = s and 2R(0, rl,) = r may be regarded, respectively,  as the coefficients of the Reynolds 
analogy and recovery enthalpy. 

When a liquid filters through the porous wall  and vaporizes at the surface in such a way that no liquid film of coo l -  

ant is formed, the corresponding heat  flux will  be qw2 = - (p v)wL. 

Having determined the heat  transfer at the porous wall  with mate r ia l  in jected according to the relation qw s = 

= ! (O V)w/, we can ca lcu la te  the total  heat flux qw = qw I + qw 2 + qw s or 

0~ 
q~  - -  ( H ,  - -  Hw) - -  (9 v)~  (L +_ l )* .  

Cp 
We shall now consider a turbulent boundary layer in relat ion to the conditions of the present problem. Taking ac -  

count of (10), we can write the equations of momentum,  energy, and diffusion in the Crocco variables for the averaged 

*Heat transfer due to radiation is not taken into account, 
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steady state, respectively, in the form [4] 

o P ~ ( ~ )  + o-~ -~  
Ox 

pr ~ ] + ( 1 - p r  ~)--4-- ~ = o~ , 

\ Pr,.  ] -}- ( 1 --  Pr~) - -  = 0, 

(39) 

(4O) 

(41) 

where 

p r  o =  c p ( ~ + % )  , p r c _ _  ~--% , 
~--~- s~ 0 (D + ~D) 

0 -d h' 07" - OCi 
- - ( 9 v ) ' u ' - - - - %  0F ' (9v)' ----~ Oy ' (9v)'C~----O~D Of 7 

C4m) 

(43) 

In (39)-(43) the bar denotes averaging, and the primes in (42) and (43) the fluctuating component. 

In the case examined the momentum equation (39) does not give a solution. However, integration of the equations 
of energy (40) and diffusion (41) with boundary conditions (13)-(16), transformed for turbulent flow, may be carried out 
in_the same way as for the laminar boundary layer. It is evident that integration results in analytical expressions for 
hlC I and ~ .  that are completely analogous to those obtained for the laminar boundary layer (23)-(28), but written for 

C C 
averaged values and with Pr and Pr m instead of Pr and Prm. Therefore, relations (36)-(38), which determine 

1 cf u 2 
co 

S t =  - -  - -  h r = h . + r  ~ ~=cppo~uooS t (h r - -h~ ) (H . - -H~) ,  
s 2 ' 

will also be valid for the turbulent boundary layer. Thus, to calculate the heat transfer coefficient a (or qw)' it is nec-  
essary to determine the coefficients r, s, and c• A method of calculating these coefficients for the case of a nonreact- 
ing turbulent boundary layer was given in [4]. 

Notation 

x -coord ina te  along the plate; y--coordinate normal to the plate; u, v - f l o w  velocity components along x and y, 
respectively; p, T, X, a, ~-respect ively,  density of mixture, absolute temperature, thermal conductivity, thermal dif- 
fusivity, and viscosity; Cp-specif ic  heat at constant pressure; D-diffusion coefficient; Cp-specif lc  heat at constant 
pressure; D-diffusion coefficient; R--universal gas constant; Pr = g Cp/k- the rmal ,  and Pr m = g/O D-diffusion Prandtl 

e 
number; sg, sk, SD-tUrbulent viscosity, thermal conductivity, and diffusion, respectively (see Eq. (43)); P r e, Pr m -  
-compound  Prandtl numbers, thermal and diffusion, respectively (see Eq. (42)); Q - h e a t  of reaction; L - h e a t  of vapor- 
i z a t i o n ; / - h e a t  emitted or received by the wall; c ~ - l o c a l  coefficient of surface friction c f  = 27"w/P oou~; h w = H w = 

2 /2; H.  = CpT, + u.2/2. Subscripts: ~ -cond i t ions  at outer edge of boundary layer; w-condi t ions  CpTw; H oo = CpT ~ + uoo 
on surface; x - v a l u e  at a given coordinate; *-condit ions in reaction zone; I -va lues  between reaction front and plate; 
I I - a b o v e  reaction front in the boundary layer. 
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